- :orphan:
- .. _one_electron_operators:
- One-electron operators
- ======================
- Syntax for the specification of one-electron operators
- ------------------------------------------------------
- A general one-electron property operator in 4-component calculations is generated from
- linear combinations of the basic form:
- .. math::
- \hat{P} = f M_{4 \times 4} \hat{\Omega}
- with the scalar factor :math:`f` and the scalar operator :math:`\hat{\Omega}`, and where
- .. math::
- M_{4 \times 4}
- is one of the following :math:`4 \times 4` matrices:
- .. math::
- I_{4 \times 4}, \gamma_5, \beta \gamma_5,
- i\alpha_x, i\alpha_y, i\alpha_z
- \Sigma_x, \Sigma_y, \Sigma_z
- \beta \Sigma_x, \beta \Sigma_y, \beta \Sigma_z
- i \beta \alpha_x, i \beta \alpha_y, i \beta \alpha_z
- One thing to notice is that an imaginary :math:`i` is added to the time-antisymmetric Dirac :math:`\boldsymbol{\alpha}` - matrices and their derivatives to make them time symmetric and hence fit into the
- quaternion symmetry scheme of DIRAC (see :cite:`Saue1999` and :cite:`Salek2005` for more information).
- Operator types
- --------------
- There are 21 basic operator types used in DIRAC, listed in this Table:
- =========== ============================================================================= ===============
- **Keyword** **Operator form** **Nr. factors**
- =========== ============================================================================= ===============
- DIAGONAL :math:`f I_{4 \times 4} \Omega` 1
- XALPHA :math:`f \alpha_x \Omega` 1
- YALPHA :math:`f \alpha_y \Omega` 1
- ZALPHA :math:`f \alpha_z \Omega` 1
- XAVECTOR :math:`f_1 \alpha_y \Omega_z - f_2 \alpha_z \Omega_y` 2
- YAVECTOR :math:`f_1 \alpha_z \Omega_x - f_2 \alpha_x \Omega_z` 2
- ZAVECTOR :math:`f_1 \alpha_x \Omega_y - f_2 \alpha_y \Omega_x` 2
- ALPHADOT :math:`f_1 \alpha_x \Omega_x + f_2 \alpha_y \Omega_y + f_3 \alpha_z \Omega_z` 3
- GAMMA5 :math:`f \gamma_5 \Omega` 1
- XSIGMA :math:`f \Sigma_x \Omega` 1
- YSIGMA :math:`f \Sigma_y \Omega` 1
- ZSIGMA :math:`f \Sigma_z \Omega` 1
- XBETASIG :math:`f \beta \Sigma_x \Omega` 1
- YBETASIG :math:`f \beta \Sigma_y \Omega` 1
- ZBETASIG :math:`f \beta \Sigma_z \Omega` 1
- XiBETAAL :math:`f i \beta \alpha_x \Omega` 1
- YiBETAAL :math:`f i \beta \alpha_y \Omega` 1
- ZiBETAAL :math:`f i \beta \alpha_z \Omega` 1
- BETA :math:`f \beta \Omega` 1
- SIGMADOT :math:`f_1 \Sigma_x \Omega_x + f_2 \Sigma_y \Omega_y + f_3 \Sigma_z \Omega_z` 1
- iBETAGAMMA5 :math:`f i \beta \gamma_5 \Omega` 1
- =========== ============================================================================= ===============
- Operator specification
- ----------------------
- Operators are specified by the keyword :ref:`HAMILTONIAN_.OPERATOR` with the following
- arguments::
- .OPERATOR
- 'operator name'
- operator type keyword
- operator labels for each component
- FACTORS
- factors for each component
- CMULT
- COMFACTOR
- common factor for all components
- Note that the arguments following the keyword :ref:`HAMILTONIAN_.OPERATOR` must start with
- a blank. The arguments are optional, except for the operator label.
- Component factors as well as the common factor are all one if not specified.
- List of one-electron operators
- ------------------------------
- +-------------+----------------------------------+----------------+----------------+----------------------------------+
- | **Operator**| **Description** | **Symmetry** | **Components** | **Operators** |
- | **label** | | | | |
- +=============+==================================+================+================+==================================+
- | MOLFIELD | Nuclear attraction integrals | Symmetric | MOLFIELD | :math:`\Omega_1 = \sum_K V_{iK}` |
- +-------------+----------------------------------+----------------+----------------+----------------------------------+
- | OVERLAP | Overlap integrals | Symmetric | OVERLAP | :math:`\Omega_1 = 1` |
- +-------------+----------------------------------+----------------+----------------+----------------------------------+
- | BETAMAT | Overlap integrals, only SS-block | Symmetric | BETAMAT | :math:`\Omega_1 = 1` |
- +-------------+----------------------------------+----------------+----------------+----------------------------------+
- | DIPLEN | Dipole length integrals | Symmetric | XDIPLEN | :math:`\Omega_1 = x` |
- | | | +----------------+----------------------------------+
- | | | | YDIPLEN | :math:`\Omega_2 = y` |
- | | | +----------------+----------------------------------+
- | | | | ZDIPLEN | :math:`\Omega_3 = z` |
- +-------------+----------------------------------+----------------+----------------+----------------------------------+
- | DIPVEL | Dipole velocity integrals | Anti-symmetric | XDIPVEL | |
- | | | +----------------+----------------------------------+
- | | | | YDIPVEL | |
- | | | +----------------+----------------------------------+
- | | | | ZDIPVEL | |
- +-------------+----------------------------------+----------------+----------------+----------------------------------+
- | QUADRUP | Quadrupole moments integrals | Symmetric | XXQUADRU | |
- | | | +----------------+----------------------------------+
- | | | | XYQUADRU | |
- | | | +----------------+----------------------------------+
- | | | | XZQUADRU | |
- | | | +----------------+----------------------------------+
- | | | | YYQUADRU | |
- | | | +----------------+----------------------------------+
- | | | | YZQUADRU | |
- | | | +----------------+----------------------------------+
- | | | | ZZQUADRU | |
- +-------------+----------------------------------+----------------+----------------+----------------------------------+
- | SPNORB | Spatial spin-orbit integrals | Anti-symmetric | X1SPNORB | |
- | | | +----------------+----------------------------------+
- | | | | Y1SPNORB | |
- | | | +----------------+----------------------------------+
- | | | | Z1SPNORB | |
- +-------------+----------------------------------+----------------+----------------+----------------------------------+
- | SECMOM | Second moments integrals | Symmetric | XXSECMOM | :math:`\Omega_1 = xx` |
- | | | +----------------+----------------------------------+
- | | | | XYSECMOM | :math:`\Omega_2 = xy` |
- | | | +----------------+----------------------------------+
- | | | | XZSECMOM | :math:`\Omega_3 = xz` |
- | | | +----------------+----------------------------------+
- | | | | YYSECMOM | :math:`\Omega_4 = yy` |
- | | | +----------------+----------------------------------+
- | | | | YZSECMOM | :math:`\Omega_5 = yz` |
- | | | +----------------+----------------------------------+
- | | | | ZZSECMOM | :math:`\Omega_6 = zz` |
- +-------------+----------------------------------+----------------+----------------+----------------------------------+
- =========== ====================================================================================================================
- **Keyword** **Description**
- =========== ====================================================================================================================
- THETA Traceless theta quadrupole integrals
- CARMOM Cartesian moments integrals, symmetric integrals, (l + 1)(l + 2)/2 components ( l = i + j + k)
- SPHMOM Spherical moments integrals (real combinations), symmetric integrals, (2l + 1) components ( m = +0, -1, +1, ..., +l)
- SOLVENT Electronic solvent integrals
- FERMI C One-electron Fermi contact integrals
- PSO Paramagnetic spin-orbit integrals
- SPIN-DI Spin-dipole integrals
- DSO Diamagnetic spin-orbit integrals
- SDFC Spin-dipole + Fermi contact integrals
- HDO Half-derivative overlap integrals
- S1MAG Second order contribution from overlap matrix to magnetic properties
- ANGLON Angular momentum around the nuclei
- ANGMOM Electronic angular momentum around the origin
- LONMOM London orbital contribution to angular momentum
- MAGMOM One-electron contributions to magnetic moment
- KINENER Electronic kinetic energy
- DSUSNOL Diamagnetic susceptibility without London contribution
- DSUSLH Angular London orbital contribution to diamagnetic susceptibility
- DIASUS Angular London orbital contribution to diamagnetic susceptibility
- NUCSNLO Nuclear shielding integrals without London orbital contribution
- NUCSLO London orbital contribution to nuclear shielding tensor integrals
- NUCSHI Nuclear shielding tensor integrals
- NEFIELD Electric field at the individual nuclei
- ELFGRDC Electric field gradient at the individual nuclei, cartesian
- ELFGRDS Electric field gradient at the individual nuclei, spherical
- S1MAGL Bra-differentiation of overlap matrix with respect to magnetic field
- S1MAGR Ket-differentiation of overlap matrix with respect to magnetic field
- HDOBR Ket-differentiation of HDO-integrals with respect to magnetic field
- NUCPOT Potential energy at the nuclei
- HBDO Half B-differentiated overlap matrix
- SQHDO Half-derivative overlap integrals not to be antisymmetrized
- DSUSCGO Diamagnetic susceptibility with common gauge origin
- NSTCGO Nuclear shielding integrals with common gauge origin
- EXPIKR Cosine and sine integrals
- MASSVEL Mass velocity integrals
- DARWIN Darwin type integrals
- CM1 First order magnetic field derivatives of electric field
- CM2 Second order magnetic field derivatives of electric field
- SQHDOR Half-derivative overlap integrals not to be anti-symmetrized
- SQOVLAP Second order derivatives overlap integrals
- =========== ====================================================================================================================
- Examples of using various operators
- -----------------------------------
- We give here several concrete examples on how to construct operators for
- various properties.
- Kinetic part of the Dirac Hamiltonian
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The kinetic part of the Dirac Hamiltonian may be specified by::
- .OPERATOR
- 'Kin energy'
- ALPHADOT
- XDIPVEL
- YDIPVEL
- ZDIPVEL
- COMFACTOR
- -68.51799475
- where -68.51799475 is :math:`-c/2`.
- The speed of light :math:`c` is an important parameter in relativistic
- theory, but its explicit value in atomic units not necessarily remembered.
- A simpler way to specify the kinetic energy operator is therefore::
- .OPERATOR
- 'Kin energy'
- ALPHADOT
- XDIPVEL
- YDIPVEL
- ZDIPVEL
- CMULT
- COMFACTOR
- -0.5
- where the keyword *CMULT* assures multiplication of the common factor -0.5 by :math:`c`.
- This option has the further advantage that *CMULT* follows any user-specified modification
- of the speed of light, as provided by :ref:`GENERAL_.CVALUE`.
- XAVECTOR
- ~~~~~~~~
- Another example::
- .OPERATOR
- 'B_x'
- XAVECTOR
- ZDIPLEN
- YDIPLEN
- CMULT
- COMFACTOR
- -0.5
- The program will assume all operators to be Hermitian and will therefore insert
- an imaginary phase *i* if necessary (applies to antisymmetric scalar
- operators).
- If no other arguments are given, the program assumes the operator to be a
- diagonal operator and expects the operator name to be the component label, for
- instance::
- .OPERATOR
- OVERLAP
- Dipole moment as finite field perturbation
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Another example is the finite perturbation calculation with the :math:`\hat{z}`
- dipole length operator added to the Hamiltonian (don't forget to decrease the
- symmetry of your system):
- .. math::
- \hat{H} = \hat{H}_0 + 0.01 \cdot \hat{z}
- ::
- .OPERATOR
- ZDIPLEN
- COMFACTOR
- 0.01
- Fermi-contact integrals
- ~~~~~~~~~~~~~~~~~~~~~~~
- Here is an example where the Fermi-contact (FC) integrals for a certain nucleus
- are added to the Hamiltonian in a finite-field calculation. Let's assume you
- are looking at a PbX dimer (order in the .mol file: 1. Pb, 2. X) and you want
- to add to the Dirac-Coulomb :ref:`**HAMILTONIAN` the FC integrals for the Pb
- nucleus as a perturbation with a given field-strength (FACTORS).
- **Important note:** The raw density values obtained after the fit of
- your finite-field energies need to be scaled by
- :math:`\frac{1}{\frac{4 \pi g_{e}}{3}} = \frac{1}{8.3872954891254192}`,
- a factor that originates from the definition of the operator for
- calculating the density at the nucleus::
- **HAMILTONIAN
- .OPERATOR
- 'Density at nucleus'
- DIAGONAL
- 'FC Pb 01'
- FACTORS
- -0.000000001
- Here is next example of how-to calculate the electron density at the
- nucleus as an expectation value :math:`\langle 0 \vert \delta(r-R) \vert 0
- \rangle` for a Dirac-Coulomb HF wave function including a decomposition of the
- molecular orbital contributions to the density::
- **DIRAC
- .WAVE FUNCTION
- .PROPERTIES
- **HAMILTONIAN
- **WAVE FUNCTION
- .SCF
- **PROPERTIES
- .RHONUC
- *EXPECTATION
- .ORBANA
- *END OF
- Cartesian moment expectation value
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- In the following example I am calculating a cartesian moment expectation value
- :math:`\langle 0 \vert x^1 y^2 z^3 \vert 0 \rangle` for a Levy-Leblond HF wave
- function::
- **DIRAC
- .WAVE FUNCTION
- .PROPERTIES
- **HAMILTONIAN
- .LEVY-LEBLOND
- **WAVE FUNCTION
- .SCF
- **PROPERTIES
- *EXPECTATION
- .OPERATOR
- CM010203
- *END OF