library(ggplot2) library(reshape) tab = read.table('/Volumes/data/martha/Networks/Data/MAGIC_VarComp_gxe_vc-flatfile.txt', h = T) plot.dir = '/Volumes/data/martha/Networks/Results/' explore.variance.components <- function(tab, plot.dir = ''){ pdffile = paste(plot.dir, 'exploratory.plots.pdf', sep = '') pdf(pdffile) print(tab[1:10,]) df.gen = melt(tab, measure.vars = c('Vcis', 'Vtrans')) print(head(df.gen)) df.all = melt(tab, measure.vars = c('Vcis', 'VcisGxE', 'Vtrans', 'VtransGxE')) #plot distribution of cis and trans qtls p <- ggplot(df.gen) + geom_density(aes(x = value, fill = variable)) + xlab('Genetic variance distribution') q <- ggplot(tab) + geom_point(aes(x = Vcis, y = Vtrans)) + xlab('Vcis') + ylab('Vtrans') r <- ggplot(df.all) + geom_boxplot(aes(x = variable, y = value, fill = variable)) h <- ggplot(tab) + geom_histogram(aes(x = Vtrans), binwidth = 0.01) print(p) print(q) print(r) print(h) dev.off() } explore.variance.components(tab, plot.dir)